光路系统分析 成都赛可隆实验室设备
文章出处: 作者:营销中心编辑部 时间:2010-7-8
主要从以下几个方面分析
1、光源和光源分布: 原子吸收光源主要是空心阴极灯、无极放电灯、连续光源,制造空心阴极灯的技术比较成熟,没有什么太大问题,而无极放电灯目前只有砷、铋、镉、铯、铷、锗、汞、磷、铅、钙、锑、碲、硒、钛、锌几种元素的,相对于各元素对应的空心阴极灯具有背景小、发射强度大、光源干扰少的优点,但其成本也高,至于连续光源是最新发展的技术,要配合其他部件才能发挥其强大的功能。总体来说做为光源要求高强度,高稳定性,干扰少。采购需要注意的是测定砷、汞、铋、锑等用空心阴极灯测定时灵敏度低的元素最好选用无极放电灯。光源分布简单的说就是空心阴极灯架(连续光源不考虑这个问题)的结构,现在一般的原子吸收光谱仪都具备了至少两个灯架,有的多达8个,灯多,一次予燃,可以减少测定过程中等待空心阴极灯预热的时间,其实就这么点优点,不过VARIAN AA280FS采用了快速序列技术,据说可以达到单道扫描ICP的分析速度。在设计中有的采用固定灯架,有的采用可移动的灯架。
2、单色器结构: 主要有Ebert型(如热电S系列、GBC等),C-T型(应该是Ebert型的一种改进)(如华洋、普析、瑞利、上海精密、岛津、VARIAN、北京瀚时 CAAM-2001、 JENA VAVIO 6、ZEEnit60/700、日立的等),Littrow型(如PE6/7/800的等),Echelle型(以大色散为著称,如JENA ContrAA、PE的SIMAA6000、热电M系列等)。其中C-T型即水平对称设计的,比较多,由于准直镜的象差被成像物镜抵消,因此可以消除象差影响;Ebert型的象差也比较小;Littrow型的,光学元件少,结构紧凑,不过有较大的象差;Echelle型以较大的衍射角和较高级次的谱线工作,并与其他棱镜等低色散的光学器件连用作成高色散中阶梯光栅单色器,其和面阵检测器结合,可以同时接受整个工作波长范围的光谱信息,因此如果光源和通道具备条件的话可以进行多元素同时分析的。我们在分光系统选择中尽量考虑比较少光程和内部材料(镀膜的、全反射)对光的吸收比较少的,以免影响分析过程中光的能量损失和不稳定,还有一个考虑就是最好分光系统能够密封,防尘,放腐蚀,同时尽量减少其他杂散光的影响,至于双光束的设计,各厂家针对自己的总体设计都有自己的特色,我们的要求就是只要能消除光源不稳定对测定的影响就OK了。对于其实际使用分辨率的要求只要在光谱带宽为0.2nm可以分辨开 Mn279.5nm和Mn279.8nm即可。
2、色散元件: 目前的一般都采用光栅做为分光器件,是光路系统的核心器件,作用吗?很简单就是把元素发射的共振线和其他发射线分开。由于空心阴极灯本身发射锐线辐射,因此在普通原子吸收中,只要求光栅具有中等分辨能力即可(对于连续光源原子吸收的要求可就高了,需要大色散的中阶梯光栅或高分辨的单色器),线刻槽密度要不小于1200条/mm(中阶梯光栅除外,我看现在各厂家的最不好的都是 1200条/mm的,大部分都高于这个的),线色散率倒数范围大约在1.5-3.0nm/mm(看了不少仪器样本,基本上都不大于1.6 nm/mm),中阶梯的在0.xnm/mm,例如:热电的M系列的是0.5nm/mm, PE的SIMAA6000为0.1nm/mm(在200nm,113级),0.4nm/mm(在800nm,28级),这个量小表明色散率大,即光栅的色散性能好哦,理论上线槽密度越大(光栅常数越小)、焦距越长,其色散性能越好,对于具有闪耀特性的光栅,其衍射光能量主要集中在以闪耀波长为中心的一定波长范围(这个计算需要的朋友可以参考相关手册来计算相关的波长范围)内,相对于以前的普通光栅而言,具有很高的集光效率,可以把80%的能量集中到所需的波长范围,对于双闪耀波长的,在更广的波长范围内有较高的光通量,而光栅面积的大小反应了光栅波长选择器的输出功率:即光学系统在光路中分出谱线时,以尽可能小的强度损失提供有用辐射光束的能力的大小,在光栅的倒线色散率一定的情况下,光栅波长选择器的输出功率与光栅面积成正比,对于光栅波长选择器性能而言,在不考虑透射、反射损失的前提下,理论上面积越大越好。
3、波长扫描及性能: 最好是在有自动的前提下,也可以手动扫描,便于仪器检定和进行临近线扣背景,一般的机子都具备这个功能的,其波长重复性方面要求其不大于0.3nm,示值误差不大于0.5nm就可以了。
4、光谱带宽: 光谱带宽是通过单色器出射狭缝后的光束波长区间的宽度(nm),与光栅的倒线色散率和出射狭缝有关,而对于特定的仪器倒线色散率一定,所以只与出射狭缝成正比。如果做的样品复杂的话,考虑有比较多的可调控制,便于消除分析过程中的邻近线干扰和调节测定的灵敏度,如:Ni的232.0nm、231.0nm、 231.6nm要是在光谱带宽为1nm时,没办法分开这3条谱线,使测定灵敏度降低,要是将光谱带宽变成0.2nm,就可以分开了,测定灵敏度将明显提高,一般可调选择范围在0.1-2.6nm,这个大部分的仪器都具备此功能,有的仪器不但可以调节狭缝宽度,还可以调节高度,这个可以在采购时测试一下,看是否对测定真的有影响。
5、检测器: 现在原子吸收的检测器主要是以普通的不同规格的PMT检测器为主,也有的以CCD(PE6/7/800、JENA的部分机型等)为检测器的。做为原子吸收的检测器应在190- 900nm范围内有光谱响应,这个可以用As193.7nm和Cs852.1nm做边缘能量检测,要求瞬时噪声小于0.03A,其基线稳定性(静态、点火)用铜灯30min内应不超出±0.0044A 。PMT检测器通过光电转化来检测接受到的信号的,其光谱响应范围受光敏材料的限制,存在漂移和暗电流(暗电流至少要小于10-10A,暗电流越小PMT 的质量越好),读出噪声相对较大,不能同时获得连续光谱的信息,但是做为常用主要检测器,他以增益高、灵敏度高、响应快、成本低在原子吸收光谱仪发展中有过光辉的历程,并且其技术现在也在不断的发展更新中。而CCD检测器是通过电子的存储和转移来检测信号的,其量子效率高,基于对检测信号的测量方式的不同,他相对PMT来说在配备连续光源和大色散的中阶梯光栅时可以提高测定的线形范围5-6个数量级,也可以同时进行多元素分析。CCD检测器在整个光谱分析区范围内有比较高的灵敏度,更适合微弱光的检测,但他对弱光的检测是基于长时间积分的基础上的,因为他是一种积分型检测器,由于其具有最底的分布电容,因此其读出噪声较低,暗电流(受温度影响,需要制冷恒温环境)也明显比PMT的低。不论从光子效率、暗电流、读出噪声、多元素同时分析、线形范围等各方面来说其性能都具有明显的优势,是以后原子吸收光谱仪发展的一种必然局势(如:JENA的ContrAA 连续光源AAS“世界第一台商品化连续光源原子吸收”)。 |